Monitoring and analysis of network data in production network - added value

Joachim Gay Senior Presales Engineer

kaspersky

About Kaspersky

Our mission is simple — building a safer world.

And in fulfilling that mission we aim to become the global leader in cybersecurity — by securing technology to make sure that the possibilities it brings become opportunities for each and every one of us.

Bring on endless possibilities. Bring on a safer tomorrow.

Eugene Kaspersky, CEO

About me

Electronics engineer IT/CT

30+ years experience in IT industry

Joined Kaspersky in 2008

Joachim Gay

Senior Presales Engineer

Introduction

As digital business blurs the digital and physical worlds, digital breaches result in physical damage.

How does it happen?

<u>"common ransoware" attack</u>

Stage 1 – Intrusion

2021 Top 3 initial access vectors

- Vulnerability exploitation
- Compromised accounts
- Malicious email

Data Exfiltration

Stage 2 – Attack

E : III

Encryption Blackmailing ↓ Quickly spreads from corporate network to shopfloor

Production affected

Why does it happen?

Unpatched public facing services Human factor Unpatched software usage

Missing network segregation/segmentation No visibility on OT communications Vulnerable OT components

How does it happen?

ICS specific attack - Triton

Stage 1 – Intrusion

External Remote Services Valid Accounts

Mimikatz, PsExec, and other tools Remote Desktop Protocol Remote Services

Stage 2 – SIS Attack

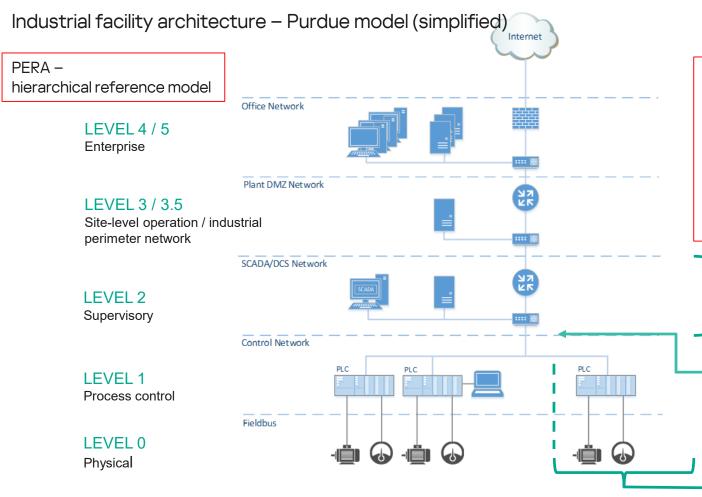
11	
I.I	

Engineering Workstation Compromise

= : III

↓ Firmware & program upload and 0-day vulnerability exploitation in a safety controller ↓

Plant emergency shutdown


Why does it happen?

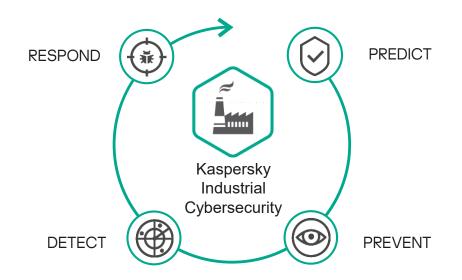
Large corporate infrastructures Human factor Supply chain attacks

OT is never isolated from IT No visibility on OT communications Vulnerable OT components

Standards like ISA/IEC 62443 have largely evolved beyond dependence on a traditional hierarchical view of functionality. It address cybersecurity for operational technology in automation and control systems.

Zone

consists of assets that share the same cybersecurity requirements


Conduit

consists of assets dedicated exclusively to communications, share the same cybersecurity requirements

Sub-zone

Examples from the field

Machine-readable threat intelligence

Three examples of how machine-readable threat intelligence can help you:

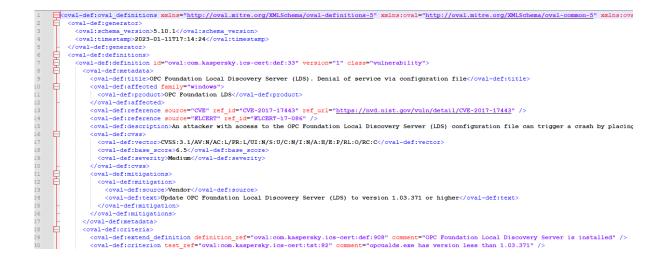
- baseline systems and security posture
- prevent threats
- detect incidents
- remediate / investigate incidents

Your CISO requests to identify vulnerabilities in the Windows DCS/SCADA software used on your shop-floor-systems to perform risk assessment.

Easy to achieve?

Where do I find vulnerability information?

System already assessed?


Software bill of materials available?

Example #1 - assess security exposure by OVAL data feed

OVAL stands for Open Vulnerability and Assessment Language, which is used to describe security vulnerabilities or desired system configurations and allows for standardized transfer of vulnerability information across various security tools and services. It is one of the main components of the SCAP standard (Security Content Automation Protocol).

OVAL definition in XML:

Example **#1** – OVAL data feed can be used in open-source or commercial tools

ovaldi.exe -m -o oval_t	feed.xml
Administrator: Command Prompt	
C:\Users\Engineer\Desktop\ovaldi>ovaldi.e	xe -m -o all_combined.xml
DUAL Definition Interpreter	
ersion: 5.10.1 Build: 7 Auild date: Apr 10 2014 06:35:51	
Copyright (c) 2002-2014 - The MITRE Corpor	ration
tart Time: Tue Feb 07 16:18:54 2023	
<pre>** parsing all_combined.xml file.</pre>	
– validating xml schema. ** checking schema version	
- Schema version - 5.10.1	
** skipping Schematron validation	
** creating a new OUAL System Characteris	stics file.
** gathering data for the OVAL definition	ns.
Collecting object: FINISHED	
** saving data model to system-character:	istics.xml.
** running the OVAL Definition analysis. Analyzing definition: FINISHED	
** applying directives to OVAL results.	
** OVAL definition results.	
OUAL Id	Result
	true
oval:com.kaspersky.ics-cert:def:83	true
oval:com.kaspersky.ics-cert:def:248	true
oval:com.kaspersky.ics-cert:def:584	true
oval:com.kaspersky.ics-cert:def:531	true
oval com kaspersky ics-cert def 276	true
oval:com.kaspersky.ics-cert:def:256	true
oval:com.kaspersky.ics-cert:def:101 oval:com.kaspersky.ics-cert:def:104	true true
oval:com.kaspersky.ics-cert:def:107	true
oval:com.kaspersky.ics-cert:def:261	true
oval:com.kaspersky.ics-cert:def:264	true
oval:com.kaspersky.ics-cert:def:254	true
oval:com.kaspersky.ics-cert:def:257	true
oval:com.kaspersky.ics-cert:def:527	true
oval:com.kaspersky.ics-cert:def:250 oval:com.kaspersky.ics-cert:def:252	true
oval:com.kaspersky.ics-cert:def:268	true true
oval:com.kaspersky.ics-cert:def:277	true
oval:com.kaspersky.ics-cert:def:273	true
oval:com.kaspersky.ics-cert:def:568	true
oval:com.kaspersky.ics-cert:def:451	true
oval:com.kaspersky.ics-cert:def:454	true

→ results.[xml|html]

9 OVAL Results							
OVAL Results Generato	r Information						OVAL Definition
Schema Version	Product Name	Product Ve	ersion	Date		Time	Schema Ver
5.10.1	cpe:/a:mitre:ovaldi:5.10.1.7	5.10.1 Build: 7		2023-02-07		8:55	5.10.1
#x	#√	#Erro			· · · ·	#Other	#Definitio
30	10	0		0		5	45 10ta
System Information							<u>r</u>
Host Name		Engineering					
Operating System			ows 7 Professional				
Operating System Versio	n	6.1.7601 Servic	e Pack 1				
Architecture		AMD64					
Interfaces	IP Address 192.168.			Intel(R) PRO/ 192.168.0.13 00-0C-29-E4-			
	istics Generator Informatic	on		- ·			-
5.10.1 Schen	na Version	an a /a mitra a	Product Name cpe:/a:mitre.ovaldi:5.10.1.7				5.10.1 Bui
		cpe./a.milie.c	waldi.5.10.1.7				5. IV. I Bu
OVAL Definition Results							
	Error Unknown	Other					
ID	Result	Class	Refe	rence ID			
oval:com.kaspersky.ic:	s-cert:def:83 true	vulnerability	CVE-2018-4832], [KLCERT-	-18-171]	Siemens SIMATIO	WinCC. Denial of servic
oval:com.kaspersky.ics	s-cert:def:248 true	vulnerability	CVE-2017-6867], [KLCERT-	-17-081]	Siemens SIMATIO	WinCC. Denial of servic
oval:com.kaspersky.ics		vulnerability	CVE-2017-6865], [KLCERT-	-17-050]	Siemens SIMATIO	WinCC. Denial of servic
oval:com.kaspersky.ics		vulnerability	CVE-2017-2684				WinCC. Authentication
oval:com.kaspersky.ics		vulnerability	CVE-2016-7165				WinCC. Local privilege
oval:com.kaspersky.ics		vulnerability	CVE-2016-5743				C WinCC. Remote code e
oval:com.kaspersky.ics	s-cert:def:101 true	vulnerability	CVE-2019-1091	[], [KLCERT	-19-263]	Siemens SIMATIO	WinCC. Command Inject
oval:com.kaspersky.ics		vulnerability	CVE-2019-1091], [KLCERT	-19-272]	Siemens SIMATIO	WinCC. Denial of servic

Example #1 - HTML output file of OVALdi local command line scanner

1 engineering workstation scanned

4 ICS software products detected

30 vulnerabilities found:

<u>CVSS 3.0</u>	rating:
Critical:	3
High:	15
Medium:	11
Low:	0

<u>CVSS 2.0</u>	rating:
Critical:	0
High:	1
Medium	0
Low:	0

Error	Unknown	Other		
ID	Result	Class	Reference ID	Title
oval:com.kaspersky.ics-cert:def:83	true	vulnerability	[CVE-2018-4832], [KLCERT-18-171]	Siemens SIMATIC WinCC. Denial of service via specially crafted RPC messages
oval:com.kaspersky.ics-cert:def:248	true	vulnerability	[CVE-2017-6867], [KLCERT-17-081]	Siemens SIMATIC WinCC, Denial of service by sending specially crafted DCOM packets
oval:com.kaspersky.ics-cert:def:584	true	vulnerability	[CVE-2017-6865], [KLCERT-17-050]	Siemens SIMATIC WinCC. Denial of service by sending specially crafted PROFINET DCP broadcast packets
oval:com.kaspersky.ics-cert:def:531	true	vulnerability	[CVE-2017-2684], [KLCERT-17-085]	Siemens SIMATIC WinCC, Authentication bypass
oval:com.kaspersky.ics-cert:def:276	true	vulnerability	[CVE-2016-7165], [KLCERT-16-059]	Siemens SIMATIC WinCC, Local privilege escalation due to unquoted service paths
oval:com.kaspersky.ics-cert:def:256	true	vulnerability	[CVE-2016-5743], [KLCERT-16-045]	Siemens SIMATIC WinCC. Remote code execution
oval:com.kaspersky.ics-cert:def:101	true	vulnerability	[CVE-2019-10916], [KLCERT-19-263]	Siemens SIMATIC WinCC, Command Injection with Local Database Server Rights
oval:com.kaspersky.ics-cert:def:104	true	vulnerability	[CVE-2019-10917], [KLCERT-19-272]	Siemens SIMATIC WinCC. Denial of service during project file loading process
oval:com.kaspersky.ics-cert:def:107	true	vulnerability	[CVE-2019-10918], [KLCERT-19-281]	Siemens SIMATIC WinCC. Remote Code Execution with "SYSTEM" Privileges
oval:com.kaspersky.ics-cert:def:261	true	vulnerability	[CVE-2019-10935], [KLCERT-19-200]	Siemens SIMATIC WinCC. Remote code execution via unrestricted file upload
oval:com.kaspersky.ics-cert:def:264	true	vulnerability	[CVE-2019-19282], [KLCERT-19-212]	Siemens SIMATIC WinCC (including TIA Portal). Denial of service via a specially crafted UDP packet when encrypted communication is enabled
oval:com.kaspersky.ics-cert:def:254	true	vulnerability	[CVE-2020-7580], [KLCERT-20-142]	Siemens SIMATIC WinCC. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:257	true	vulnerability	[CVE-2020-10048], [KLCERT-20-141]	Siemens SIMATIC WinCC. Authentication Bypass to the password-protected files
oval:com.kaspersky.ics-cert:def:527	true	vulnerability	[CVE-2021-40142], [KLCERT-21-440]	Siemens SIMATIC WinCC. Denial of service
oval:com.kaspersky.ics-cert:def:250	true	vulnerability	[CVE-2021-40358], [KLCERT-21-329]	Siemens SIMATIC WinCC. Arbitrary file operations via Path Traversal
oval:com.kaspersky.ics-cert:def:252	true	vulnerability	[CVE-2021-40359], [KLCERT-21-331]	Siemens SIMATIC WinCC. Arbitrary file reading via Path Traversal
oval:com.kaspersky.ics-cert:def:268	true	vulnerability	[CVE-2021-40360], [KLCERT-21-390]	Siemens SIMATIC WinCC. Exposure of password hash to an unauthorized actor
oval:com.kaspersky.ics-cert:def:277	true	vulnerability	[CVE-2021-40363], [KLCERT-21-391]	Siemens SIMATIC WinCC. Insertion of sensitive information into externally accessible file or directory
oval:com.kaspersky.ics-cert:def:273	true	vulnerability	[CVE-2021-40364], [KLCERT-21-330]	Siemens SIMATIC WinCC. Information disclosure via log files
oval:com.kaspersky.ics-cert:def:451	true	vulnerability	[CVE-2015-1594], [KLCERT-15-026]	Siemens SIMATIC STEP 7. Arbitrary code execution
oval:com.kaspersky.ics-cert:def:454	true	vulnerability	[CVE-2021-31894], [KLCERT-21-222]	Siemens SIMATIC STEP 7. Incorrect permission assignment
oval:com.kaspersky.ics-cert:def:456	true	vulnerability	[CVE-2021-31893], [KLCERT-21-446]	Siemens SIMATIC STEP 7. Remote code execution
oval:com.kaspersky.ics-cert:def:332	true	vulnerability	[CVE-2020-7585], [KLCERT-20-155]	Siemens SIMATIC STEP 7. Arbitrary code execution via DLL hijacking
oval:com.kaspersky.ics-cert:def:333	true	vulnerability	[CVE-2020-7586], [KLCERT-20-156]	Siemens SIMATIC STEP 7. Denial of service due to heap-based buffer overflow
oval:com.kaspersky.ics-cert:def:876	true	vulnerability	[CVE-2020-7580], [KLCERT-20-243]	Siemens SIMATIC STEP 7. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:2	true	vulnerability	[CVE-2016-8563], [KLCERT-16-067]	Siemens Automation License Manager. Denial of service by specially crafted packets
oval:com.kaspersky.ics-cert:def:3	true	vulnerability	[CVE-2016-8564], [KLCERT-16-068]	Siemens Automation License Manager. SQL Injection
oval:com.kaspersky.ics-cert:def:136	true	vulnerability	[CVE-2018-11455], [KLCERT-18-173]	Siemens Automation License Manager. Remote code execution
oval:com.kaspersky.ics-cert:def:1074	true	vulnerability	[CVE-2018-11456], [KLCERT-18-174]	Siemens Automation License Manager. Port scanning vis specially crafted packets
oval:com.kaspersky.ics-cert:def:33	true	vulnerability	[CVE-2017-17443], [KLCERT-17-086]	OPC Foundation Local Discovery Server (LDS). Denial of service via configuration file
oval:com.kaspersky.ics-cert:def:13	true	inventory		Siemens SIMATIC WinCC is installed
oval:com.kaspersky.ics-cert:def:568	true	inventory		Siemens SIMATIC STEP 7 is installed
oval:com.kaspersky.ics-cert:def:5	true	inventory		Siemens Automation License Manager is installed
oval:com.kaspersky.ics-cert:def:902	false	inventory		ARC Informatique PcVue is installed
oval:com.kaspersky.ics-cert:def:908	true	inventory		OPC Foundation Local Discovery Server is installed
oval:com.kaspersky.ics-cert:def:448	false	vulnerability	[CVE-2015-1594], [KLCERT-15-026]	Siemens SIMATIC STEP 7. Arbitrary code execution
oval:com.kaspersky.ics-cert:def:449	false	vulnerability	[CVE-2015-1594], [KLCERT-15-026]	Siemens SIMATIC STEP 7. Arbitrary code execution
oval:com.kaspersky.ics-cert:def:450	false	vulnerability	[CVE-2015-1594], [KLCERT-15-026]	Siemens SIMATIC STEP 7. Arbitrary code execution
oval:com.kaspersky.ics-cert:def:452	false	vulnerability	[CVE-2015-1594], [KLCERT-15-026]	Siemens SIMATIC STEP 7. Arbitrary code execution
oval:com.kaspersky.ics-cert:def:877	false	vulnerability	[CVE-2020-7580], [KLCERT-20-243]	Siemens SIMATIC STEP 7. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:878	false	vulnerability	[CVE-2020-7580], [KLCERT-20-243]	Siemens SIMATIC STEP 7. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:879	false	vulnerability	[CVE-2020-7580], [KLCERT-20-243]	Siemens SIMATIC STEP 7. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:880	false	vulnerability	[CVE-2020-7580], [KLCERT-20-243]	Siemens SIMATIC STEP 7. Arbitrary code execution with 'SYSTEM' privileges
oval:com.kaspersky.ics-cert:def:36	false	vulnerability	[CVE-2020-26868], [KLCERT-20-016]	ARC Informatique PcVue. Denial of service
oval:com.kaspersky.ics-cert:def:37	false	vulnerability	[CVE-2020-26869], [KLCERT-20-017]	ARC Informatique PcVue. Session information exposure

Note that vulnerabilities in the operating system and other software products were not considered!

Example **#1** – take away

Kaspersky Industrial OVAL Data Feed for Windows:

- provides high-quality machine-readable vulnerability data
- covers most popular SCADA systems and other industrial software

Supports owner of industrial control system with:

- automated detection of known vulnerabilities in ICS Software
- assessment of existing cybersecurity risks
- choosing appropriate mitigation measures

Example **#2** – Triton Attack – threat from outside

Triton (aka Trisis /Hatman) attack targeted Schneider Electric Triconex safety systems to cause physical damage.

How effective is your north-south network protection?

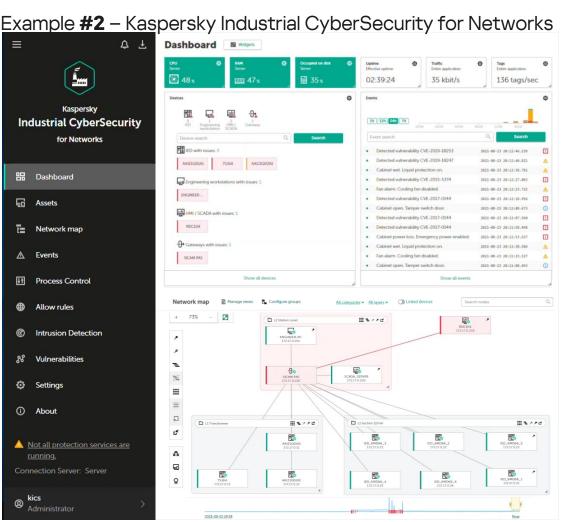
Are you aware of 'standard' network communication?

Do you monitor your production network, e.g. east-west traffic?

Has your plant been assessed?

Example #2 – attack detection / network monitoring recommended in ICS

The German Federal Office for Information Security (BSI) recommends, monitoring and anomaly detection in production networks.


Critical Infrastructures Ordinance (*KRITIS*-Verordnung) of German IT Security Act 2.0 obliges the operators:

"...to use attack detection systems [...] from 1 May 2023 according to the legislation."

RECOMMENDATION: IT IN PRODUCTION

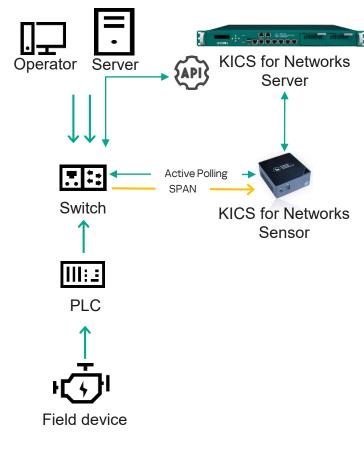
Monitoring and Anomaly Detection in Production Networks Is this normal?

OT Intrusion Detection

Ability to detect APTs on the lowest level (ICS Protocols DPI and specific signatures)

Asset Inventory

Passive detection of OT components, their communications and known vulnerabilities


Visibility

Situational awareness and reporting, identifying deviations from the normal state

Response and audit

Assists in root cause analysis for OT incidents, provides value to incident responders/SOC personal

Example **#2** – active / passive network monitoring technologies and capabilities

OT Network Security Monitoring - Key Technologies and Capabilities

Passive:

Asset Discovery – executes passive & detailed OT infrastructure inventory Risk Scoring – alarms on asset, infrastructure or process risks in OT infrastructure

Network Integrity Control – detects unauthorized network hosts and flows Command Control – inspects commands over industrial protocols Network Interactions Map – visualizes network communication flow Intrusion Detection System – alarms on signs of offensive network actions ICS Deep Packet Inspection – inspects OT traffic for process parameter values

PLC Integrity Control – learns PLC program state and tracks changes from traffic

<u>Active:</u>

Active Polling – permits to clarify attributes which are not found passively Network Topology – represents schematic network topology diagram API – provides external system integration and response capabilities The Trition attack would be detected, even without knowing about details of the attack.

Just by the deviation from the normal state (baseline) of network communication, the unknown communication would be discovered and reported by Kaspersky Industrial CyberSecurity for Networks.

Later on the Federal Office for Information Security provided a SNORT IDS rule and description about the detection methodology.

Visit of the manufacturer service personnel on the production line, to troubleshoot an issue. To analyze the problem the technician needs access to machine debug interface which is connected to your network.

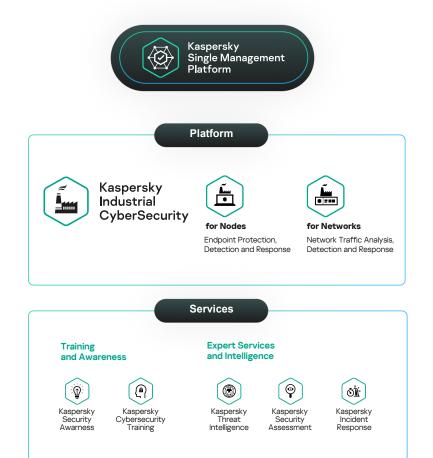
How effective is your north-south network protection?

Do you monitor your production network, e.g. east-west traffic?

What could happen if a foreign laptop is plugged into the production network?

Network baseline available?

While entering the plant the service technician bypassed all your north-south network protection measures.


With OT monitoring and anomaly solutions like Kaspersky Industrial Cybersecurity for Networks in place, you would detect threats and store information for retrospective analysis.

- network scans
- malware communication (IDS rules)
- communication with PLCs
- record all the communication
- store pcap files in case of an incident

Products & Services

Solution for industrial enterprises

Thank you!

Click here for more information about <u>Kaspersky Industrial CyberSecurity</u> or contact our Swiss team.

Kaspersky Lab Switzerland GmbH Bahnhofstrasse 69 8001 Zürich Rene Bodmer <<u>Rene.Bodmer@kaspersky.com</u>>

kaspersky